1. Considera os seguintes números racionais.

$$\frac{9}{4}$$
, $\frac{8}{3}$, $-\frac{2}{7}$, $\frac{12}{5}$, $-\frac{3}{11}$

- 1.1 Representa-os na forma de dízima.
- 1.2 Indica o comprimento das dízimas finitas e o período das infinitas periódicas.
- 1.3 Arredonda com 3 c.d. as dízimas infinitas periódicas.
- **1.4** Justifica que $\frac{9}{4}$ e $\frac{12}{5}$ são frações decimais.
- 2. Observa o retângulo representado na figura e as respetivas dimensões.

$$\left(\frac{2}{3} - \frac{1}{6}\right) dm$$

$$\left(\frac{1}{5} + 0, 1\right) dm$$

- 2.1 O retângulo tem perímetro:
 - **(A)** $\frac{8}{10}$ dm

- **(B)** $\frac{8}{5}$ dm **(C)** $\frac{3}{20}$ dm **(D)** $\frac{3}{10}$ dm
- 2.2 Determina, em dm², a área do retângulo.

Apresenta o resultado na forma de fração irredutível.

3. Determina o valor, na forma mais simplificada possível, de cada uma das seguintes expressões numéricas.

3.1
$$(-12 + 20) \div (4 - 10)$$

3.2
$$\frac{5}{6} - \left(-\frac{3}{8}\right) \times \frac{8}{3}$$

3.3
$$(-4)^2 + (-3)^3$$

3.4
$$(18 - 9) \div 3 + 2 \times (-5)$$

3.5
$$\left(\frac{2}{3} + \frac{3}{4}\right) \div \left(\frac{5}{6} - \frac{1}{8}\right)$$

3.6
$$-4 \div \sqrt{25} + \frac{2}{3} \times \sqrt{16} \div \frac{5}{3}$$

3.7
$$7^5 \div 7^3 - \sqrt[3]{8} \times \sqrt{81} \times \left(-\frac{2}{3}\right)$$

4. Completa corretamente com os símbolos <, > ou =.

4.3
$$\frac{4}{7}$$
 ____ 0,57

4.4 2 ×
$$\left|-\frac{5}{4}\right|$$
 ____ 3 $-\frac{1}{2}$

4.5
$$|-\frac{3}{2}|$$
 ____ $|-\frac{2}{3}|$

4.6
$$\left|1-\frac{5}{3}\right|$$
 _____ - $\left(-\frac{2}{3}\right)$

5. Indica um número compreendido entre:

5.1
$$\sqrt{20}$$
 e $\sqrt{37}$

5.2
$$\sqrt[3]{8}$$
 e $\sqrt[3]{27}$

6. Escreve na forma de uma potência de expoente positivo cada uma das potências seguintes.

6.1
$$3^{-2}$$

6.2
$$(-4)^{-3}$$

6.3
$$\left(\frac{5}{6}\right)^{-5}$$

6.4
$$\left(-\frac{3}{5}\right)^{-4}$$

7. Calcula o valor numérico de cada uma das seguintes expressões, utilizando, sempre que possível, as regras operatórias das potências.

7.1
$$\left(-\frac{2}{9}\right)^2 \div \left(\frac{3}{4}\right)^{-2}$$

7.2
$$\left(\frac{2}{5}\right)^3 \times \left(\frac{15}{2}\right)^3 \times \left(\frac{7}{3}\right)^3 \times \left(\frac{1}{7}\right)^6 \div 7^{-4}$$

7.3
$$0.4^5 \div (-2)^{-5} \times 1.25^3$$

7.4
$$\frac{\left(\frac{4}{3}\right)^3 \times \left(-\frac{2}{3}\right)^3 \div \left(\frac{9}{8}\right)^{-2}}{\left(\frac{9}{2}\right)^{-3}}$$

- 8. Um parque infantil, de forma quadrada, tem 225 m² de área.
 - 8.1 Qual é, em metros, a medida do lado desse parque infantil?
 - 8.2 Para cercar esse parque infantil, quantos metros de vedação serão necessários?

9. Considera os seguintes números.

$$\frac{3}{4}$$
 , 0,00056 , 7200 \times 10^{5} , 45 \times 10^{-3}

- **9.1** Representa $\frac{3}{4}$ na forma de dízima.
- 9.2 Escreve cada um dos números em notação científica.
- 10. Calcula e escreve o resultado em notação científica.
 - **10.1** O dobro de 45×10^6 .
 - **10.2** Metade do triplo de 1300×10^{-12} .
 - **10.3** 38% de 42.7×10^{-9} .
- 11. Num laboratório, calcula-se que existam, aproximadamente, 3×10^8 bactérias por cada mililitro de uma determinada solução.

Quantas bactérias haverá, aproximadamente, em 12,5 $\, imes\,10^4$ mililitros dessa solução? Apresenta o resultado em notação científica.

Questão	1.1	1.2	1.3	1.4	2.1	2.2	3.1	3.2	3.3	3.4	3.5	3.6	3.7	4.	5.1
Cotação	3	3	3	3	3	3	3	3	3	3	3	3	3	6	3
Questão	5.2	6.	7.1	7.2	7.3	7.4	8.1	8.2	9.1	9.2	10.1	10.2	10.3	11.	Total
Cotação	3	8	3	3	3	3	3	3	1	4	4	4	4	6	100

1.

1.1
$$\frac{9}{4} = 2,25$$
; $\frac{8}{3} = 2,(6)$; $-\frac{2}{7} = -0,(285714)$; $\frac{12}{5} = 2,4$; $-\frac{3}{11} = -0,(27)$

1.2
$$\frac{9}{4}$$
 = 2,25; comprimento 2

$$\frac{12}{5}$$
 = 2,4; comprimento 1

$$\frac{8}{3}$$
 = 2, (6); período 6

$$-\frac{2}{7} = -0$$
, (285714); período 285714

$$-\frac{3}{11} = -0$$
, (27); período 27

1.3
$$\frac{8}{3} \approx 2,666$$
 $-\frac{2}{7} \approx -0,286$ $-\frac{3}{11} \approx -0,273$

1.4 Como $\frac{9}{4}$ e $\frac{12}{5}$ representam dizimas finitas, podemos afirmar que são frações decimais.

2.

2.1 Opção (B) **2.2**
$$\frac{3}{20}$$
 dm²

3.

3.1
$$-\frac{4}{3}$$
 3.2 $\frac{11}{6}$ **3.3** -11 **3.4** -7 **3.5** 2 **3.6** $\frac{4}{5}$ **3.7** 61

4.

5.

5.1 5, por exemplo. **5.2** 2,4, por exemplo.

6.

6.1
$$\left(\frac{1}{3}\right)^2$$
 6.2 $\left(-\frac{1}{4}\right)^3$ **6.3** $\left(\frac{6}{5}\right)^5$ **6.4** $\left(-\frac{5}{3}\right)^4$

7.

7.1
$$\frac{1}{36}$$
 7.2 7 **7.3** $-\frac{16}{25}$ **7.4** $-\frac{81}{64}$

8.

8.1
$$l = 15 \text{ m}$$
 8.2 60 metros

9.

9.2
$$\frac{3}{4} = 7.5 \times 10^{-1}$$
; $0.00056 = 5.6 \times 10^{-4}$; $7200 \times 10^{5} = 7.2 \times 10^{8}$; $45 \times 10^{-3} = 4.5 \times 10^{-2}$

10.

10.1 2
$$\times$$
 45 \times 10⁶ = 9 \times 10⁷

10.2
$$\frac{3}{2}$$
 × 1300 × 10⁻¹² = 1,95 × 10⁻⁹

10.3 0,38
$$\times$$
 42,7 \times 10⁻⁹ = 1,6226 \times 10⁻⁸

11. $3,75 \times 10^{13}$ bactérias