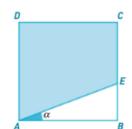


Ficha de Trabalho

DISCIPLINA: Matemática A _ 11ºano (Trigonometria)

Exercícios retirados de testes e fichas de anos anteriores


Exercício 1

Na figura está representado um quadrado [ABCD] cujo perímetro é 16.

O ponto E pertence ao lado [BC] e sabe-se que tan $\alpha = \frac{3}{8}$

Determina:

- a) $\cos \alpha$
- **b)** o perímetro do trapézio [AECD]


Retirado do Manual "Novo Espaço" da Porto Editora

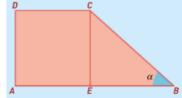
Exercício 2

Na figura está representado um trapézio retângulo [ABCD].

De acordo com os dados da figura, determina:

- a) as razões trigonométricas do ângulo β ;
- **b)** a amplitude de β , em graus, arredondada às décimas.

Retirado do Manual "Novo Espaço" da Porto Editora


Exercício 3

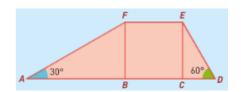
Na figura está representado um trapézio retângulo [ABCD], sendo [AECD] um quadrado e α a

amplitude do ângulo CBE.

Sabe-se que $\sin \alpha = \frac{2}{3} e \, \overline{BC} = 6 \, cm$.

Determina o perímetro do trapézio.

Retirado do Manual "Novo Espaço" da Porto Editora


Observa o trapézio [ABCD] representado na figura.

Sabe-se que:

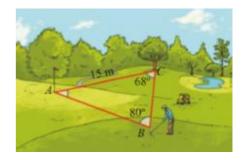
- [BCEF] é um quadrado;
- $\overline{BC} = 5$
- $B\hat{A}F = 30^{\circ}$
- $E\widehat{D}C = 60^{\circ}$

Determina o valor exato:

- a) da área do trapézio;
- b) do perímetro do trapézio.

Retirado do Manual "Novo Espaço" da Porto Editora

Exercício 5

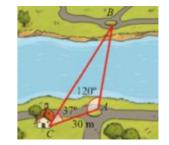

Observa a figura.

Em relação ao triângulo [ABC], sabe-se que:

- $\overline{AC} = 15 m$
- $\hat{B} = 80^{\circ}$
- $\hat{C} = 68^{\circ}$

Determina, em metros, \overline{AB} e \overline{BC} .

Apresenta os resultados arredondados às décimas.



Retirado do Manual "Novo Espaço" da Porto Editora

Exercício 6

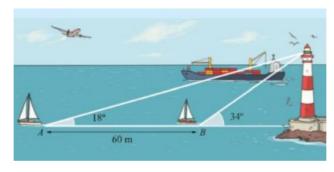
Pretende-se construir uma ponte entre duas localidades A e B, uma de cada lado de um rio. Para isso, é

necessário fazer um estudo prévio para determinar o comprimento da ponte. O técnico responsável pela medição começou por considerar um local C, não colinear com A e B, localizado na margem onde se encontra e tal que $\overline{AC}=30m$.

Com um teodolito (instrumento de medição de ângulos) colocado em C e em A obteve, respetivamente, $A\hat{C}B=37^\circ$ e $B\hat{A}C=120^\circ$.

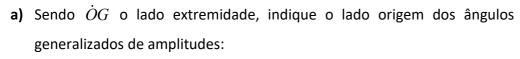
Com base nos dados apresentados, determina o comprimento da ponte.

Apresenta o resultado em metros, arredondado às unidades.

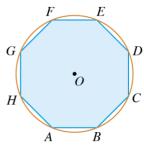


Para determinar a altura de um farol, utiliza o esquema e os dados apresentados a seguir.

Apresenta o resultado arredondado às unidades e se procederes a arredondamentos em cálculo intermédios conserva duas casas decimais.


Retirado do Manual "Novo Espaço" da Porto Editora

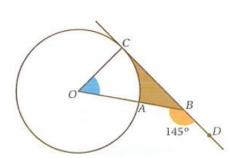
Exercício 8


Considere o octógono [ABCDEFGH] inscrito numa circunferência de centro O.

Sendo $\dot{O}B$ o lado origem, indique o lado extremidade dos ângulos generalizados definidos por:

i)
$$(-135^{\circ}, -4)$$

ii)
$$-3690^{\circ}$$



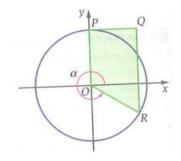
Exercício 9

A figura representa uma circunferência de centro em O e raio 10~cm. A reta CB é tangente à circunferência no ponto C e a amplitude do ângulo ABD é 145° .

Determina a amplitude, em graus, do ângulo BOC.

- a) Calcula a área do triângulo [OBC].
 Apresenta o resultado, em milímetros quadrados, arredondado às unidades.
- b) Determina o perímetro da região sombreada.
 Apresenta o resultado arredondado à décima do metro.

Retirado do Livro de Preparação para Exame da Raiz Editora


Na figura, estão representados a circunferência trigonométrica e um trapézio retângulo [OPQR]. Sabe-se que:

o ponto P tem coordenadas (0,1);

o ponto R pertence ao 4° Quadrante e à circunferência.

Seja α a amplitude do ângulo cujo lado origem é o semieixo positivo Ox e cujo lado extremidade é a semirreta $\dot{O}R$.

Qual das seguintes expressões dá o perímetro do trapézio $[\mathit{OPQR}]$ em função de α .

(A)
$$cos\alpha + 3$$

(B)
$$cos\alpha + 2$$

(C)
$$cos\alpha + 3$$

(D)
$$4 - sen\alpha$$

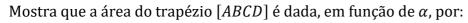
$$+$$
 $sen \alpha$

Nota: Apresenta o teu raciocínio de forma claro bem como todos os cálculos que efetuares.

Retirado do Livro de Preparação para Exame da Raiz Editora

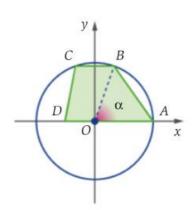
Exercício 11

Na figura abaixo está representada uma circunferência de raio 3 e centro na origem do referencial ortonormado 0xy.


Na figura está também representado um trapézio [ABCD].

O ponto A é o ponto da circunferência que pertence ao semieixo positivo das abcissas.

Os ponto B e C pertencem à circunferência e são simétricos em relação ao eixo das ordenadas.

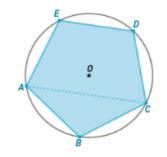

O ponto D pertence ao eixo Ox e tem abcissa $-\frac{3}{2}$.

Considera que $A\hat{O}B = \alpha$, $\alpha \in]0$, $90^{\circ}[$.

$$A(\alpha) = 9\sin\alpha\cos\alpha + \frac{27}{4}\sin\alpha$$

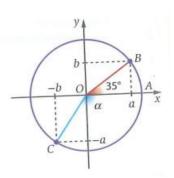
E determina o valor exato da área do trapézio [ABCD] quando este é um trapézio retângulo.

Retirado do Livro de Preparação para Exame da Raiz Editora



Na figura está representado um pentágono regular [ABCDE] inscrito numa circunferência de centro O.

Sabe-se que o perímetro do pentágono é 25.


Mostra que: $\overline{AC} = 10 \sin(54)$

Exercício 13

Na figura está representada em referencial o.n. xOy a circunferência trigonométrica. Sabe-se que:

- o ponto A tem coordenadas (1,0);
- a amplitude do ângulo orientado AOB é 35°;
- a amplitude do ângulo orientado AOC é α ;
- os ângulos AOB e AOC têm o mesmo lado origem;
- o ponto *B* tem coordenadas (*a* , *b*);
- o ponto C tem coordenadas (-b, -a).

- a) Determina a amplitude do ângulo α .
- **b)** Apenas uma das seguintes expressões dá o valor de $tg(595^\circ) sen(-1135^\circ) cos(395^\circ) + tg(755^\circ)$ em função de a e de b. Indica qual.
 - (A) $\frac{a}{b}$
- (B) $\frac{1}{ah}$
- (C) $\frac{b}{a}$
- **(D)** *ab*

Retirado do Livro de Preparação para Exame da Raiz Editora

FIM

