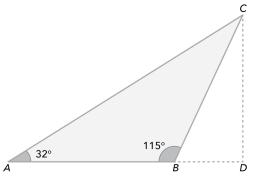
	Teste de Matemática A
	2025 / 2026
Teste N.º 1	
Matemática A	
Duração do teste: 90 minutos	
11.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma:
Utilize apenas caneta ou esferográfica	·
É permitido o uso de calculadora.	que aquilo que pretende que não seja classificado.
Apresente apenas uma resposta para (cada item
As cotações dos itens encontram-se no	
Na resposta aos itens de escolha múlti	ipla, selecione a opção correta. Escreva, na folha de
respostas, o número do item e a letra q	μe identifica a opção escolhida.
•	ente todos os cálculos que tiver de efetuar e todas as
ustificações necessárias. Quando, p	ara um resultado, não é pedida a aproximação,
apresente sempre o valor exato.	

1. Na figura está representado o triângulo [ABC].

Sabe-se que:

- $\overline{AB} = 18$ cm;
- $B\hat{A}C = 32^{\circ}$;
- $C\hat{B}A = 115^{\circ}$;
- [CD] é altura do triângulo [ABC] relativa ao lado [AB];
- a figura não está desenhada à escala.

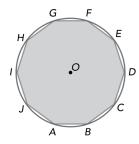


Determine a área do triângulo [ABC].

Apresente o resultado, em cm², arredondado às unidades.

Em cálculos intermédios, se proceder a arredondamentos, conserve, no mínimo, três casas decimais.

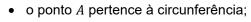
2. Considere o decágono regular [ABCDEFGHI]], inscrito numa circunferência de centro 0.



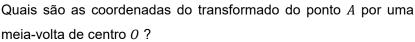
Em qual das seguintes opções se encontra a imagem do ponto B por meio de uma rotação de centro O e ângulo de amplitude -1548° ?

3. Num referencial ortonormado 0xy está representada uma circunferência de raio 3.

Sabe-se que:



• o ângulo que tem como lado origem o semieixo positivo Ox e como lado extremidade a semirreta OA tem amplitude 150° .



(B)
$$\left(\frac{3\sqrt{3}}{2}, -\frac{3}{2}\right)$$

(C)
$$\left(-\frac{3}{2}, \frac{3\sqrt{3}}{2}\right)$$

(D)
$$\left(\frac{3}{2}, -\frac{3\sqrt{3}}{2}\right)$$

150°

4. Na figura estão representados, num referencial o.n. 0xy, a circunferência trigonométrica e o polígono [OABC].

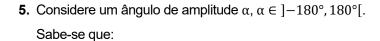
Sabe-se que:

- os vértices A, B e C são pontos da circunferência;
- A e C são simétricos em relação ao eixo das abcissas;
- B tem ordenada nula;
- o ângulo que tem por lado origem o semieixo positivo Oy e por lado extremidade a semirreta \dot{OC} tem amplitude β ($\beta \in]0^{\circ}, 90^{\circ}[$).

Para um determinado valor de β , o polígono [*OABC*] tem área $\frac{5}{13}$.

Determine, para este valor de β , o valor exato de sen β .

Apresente o resultado na forma de fração irredutível.



- $\operatorname{sen} \alpha \times \operatorname{tg} \alpha > 0$
- $\frac{\cos\alpha}{1+\tan\alpha}$ < 0

A que quadrante pertence o ângulo de amplitude $\alpha - 60^{\circ}$?

- (A) Primeiro
- (B) Segundo
- (C) Terceiro
- (D) Quarto
- **6.** Considere $\alpha \in \left[\frac{3\pi}{2}, 2\pi\right]$ tal que $\sin^2 \alpha + \cos(\pi \alpha) + \frac{1}{9} = 0$.
 - **6.1** Mostre que sen $\alpha = -\frac{\sqrt{5}}{3}$ e que tg $\alpha = -\frac{\sqrt{5}}{2}$.
 - **6.2** Determine o valor exato de $3 \operatorname{sen}(3\pi + \alpha) + \cos^2\left(\frac{\pi}{2} \alpha\right) + 2 \operatorname{tg}(\alpha 2\pi)$.

Apresente o resultado na forma de fração irredutível.

7. Considere a função real de variável real *f* tal que:

$$f(x) = \frac{\operatorname{sen}(2x) + \cos(2x)}{1 + \cos\left(\frac{\pi}{2} - 2x\right)}$$

Qual dos conjuntos seguintes representa o domínio da função f?

(A)
$$\mathbb{R}\setminus\left\{x\in\mathbb{R}:x=-\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\right\}$$
 (B) $\mathbb{R}\setminus\left\{x\in\mathbb{R}:x=\frac{3\pi}{4}+k\pi,k\in\mathbb{Z}\right\}$

(B)
$$\mathbb{R}\setminus\left\{x\in\mathbb{R}:x=\frac{3\pi}{4}+k\pi,k\in\mathbb{Z}\right\}$$

(C)
$$\mathbb{R}\setminus\left\{x\in\mathbb{R}:x=-\frac{3\pi}{4}+k\pi,k\in\mathbb{Z}\right\}$$

(C)
$$\mathbb{R}\setminus\left\{x\in\mathbb{R}:x=-\frac{3\pi}{4}+k\pi,k\in\mathbb{Z}\right\}$$
 (D) $\mathbb{R}\setminus\left\{x\in\mathbb{R}:x=-\frac{3\pi}{2}+k\pi,k\in\mathbb{Z}\right\}$

8. Seja g a função, de domínio \mathbb{R} , definida por:

$$g(x) = (\cos x - 1)^2 - \cos\left(\frac{\pi}{2} + \pi x\right) - 2\sin\left(\frac{3\pi}{2} - x\right) + 3\sin(\pi + \pi x) - 1 + \sin^2(-x)$$

Utilizando processos exclusivamente analíticos, resolva os itens seguintes.

- **8.1** Mostre que $g(x) = 1 2 \operatorname{sen}(\pi x)$.
- 8.2 Em qual das seguintes opções se encontram os valores de P e de f, correspondentes ao período positivo mínimo e à frequência da função g, respetivamente?
 - **(A)** $2 e^{\frac{1}{2}}$
- **(B)** $\frac{1}{2}$ e 2
- (C) $2\pi e^{\frac{\pi}{2}}$ (D) $\frac{\pi}{2} e^{2\pi}$

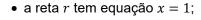
9. Considere a função f, de domínio \mathbb{R} , definida por:

$$f(x) = 3 + 5\cos\left(5x + \frac{\pi}{7}\right)$$

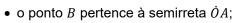
Prove que, para todo o valor real de x, $f\left(x-\frac{\pi}{2}\right)+f\left(x+\frac{\pi}{2}\right)=6$.

10. Na figura estão representados, em referencial o.n. Oxy, a circunferência trigonométrica, o trapézio [ABCD] e a reta r.

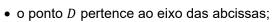
Sabe-se que:



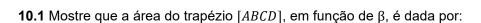
• o ponto A, situado no quarto quadrante, pertence à circunferência;



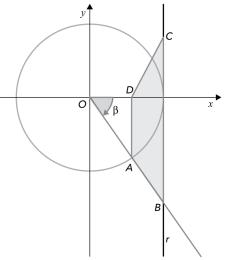
- os pontos B e C são pontos da reta r;
- o ponto C tem ordenada simétrica à ordenada do ponto A;



- a reta AD é paralela ao eixo das ordenadas;
- o ângulo que tem por lado origem o semieixo positivo das abcissas e por lado extremidade a semirreta $\dot{O}A$ tem amplitude $\beta \left(\beta \in \left] - \frac{\pi}{2}, 0\right[\right)$.



$$A(\beta) = -\frac{\operatorname{tg} \beta + \operatorname{sen} \beta - 2\operatorname{sen} \beta \cos \beta}{2}$$



10.2 Para um certo valor de β , pertencente ao intervalo $\left]-\frac{\pi}{2}$, $0\right[$, sabe-se que:

$$\operatorname{sen}\left(-\frac{3\pi}{2} - \beta\right) - 2\operatorname{cos}(\pi - \beta) = \frac{6}{5}$$

Recorrendo a processos exclusivamente analíticos, determine o valor exato de $A(\beta)$.

FIM

COTAÇÕES

	Item												
	Cotação (em pontos)												
1.	2.	3.	4.	5.	6.1	6.2	7.	8.1	8.2	9.	10.1	10.2	Total
18	10	10	18	10	20	18	10	20	10	18	20	18	200

Teste N.º 1 de Matemática A • 11.º Ano Proposta de resolução

1.
$$D\hat{B}C = 180^{\circ} - 115^{\circ} = 65^{\circ}$$

$$\begin{cases} \operatorname{tg} 65^{\circ} = \frac{\overline{CD}}{\overline{BD}} \\ \operatorname{tg} 32^{\circ} = \frac{\overline{CD}}{\overline{AD}} \\ \end{cases} \Leftrightarrow \begin{cases} \overline{CD} = \operatorname{tg} 65^{\circ} \times \overline{BD} \\ \overline{CD} = \operatorname{tg} 32^{\circ} \times \overline{AD} \\ \end{cases} \Leftrightarrow \begin{cases} \overline{CD} = \operatorname{tg} 32^{\circ} \times \overline{AB} \\ \hline{CD} = \operatorname{tg} 32^{\circ} \times (\overline{AB} + \overline{BD}) \\ \end{cases} \Leftrightarrow \begin{cases} \overline{CD} = \operatorname{tg} 65^{\circ} \times \overline{BD} \\ \hline{CD} = \operatorname{tg} 32^{\circ} \times (18 + \overline{BD}) \\ \end{cases} \Leftrightarrow \begin{cases} \overline{CD} = \operatorname{tg} 65^{\circ} \times \overline{BD} \\ \hline{CD} = \operatorname{tg} 32^{\circ} \times 18 + \operatorname{tg} 32^{\circ} \times \overline{BD} \\ \end{cases} \Leftrightarrow \begin{cases} \overline{CD} = \operatorname{tg} 32^{\circ} \times 18 + \operatorname{tg} 32^{\circ} \times \overline{BD} \\ \end{cases} \Leftrightarrow \begin{cases} \overline{CD} = \operatorname{tg} 32^{\circ} \times 18 + \operatorname{tg} 32^{\circ} \times \overline{BD} \\ \end{cases} \Leftrightarrow \begin{cases} \overline{BD} \times (\operatorname{tg} 65^{\circ} - \operatorname{tg} 32^{\circ}) = \operatorname{tg} 32^{\circ} \times 18 \\ \end{cases} \Leftrightarrow \begin{cases} \overline{BD} = \frac{\operatorname{tg} 32^{\circ} \times 18}{\operatorname{tg} 65^{\circ} - \operatorname{tg} 32^{\circ}} \\ \overline{BD} = \frac{\operatorname{tg} 32^{\circ} \times 18}{\operatorname{tg} 65^{\circ} - \operatorname{tg} 32^{\circ}} \end{cases}$$

$$A_{[ABD]} = \frac{\overline{AB} \times \overline{CD}}{2} = \frac{18 \times \text{tg } 65^{\circ} \times \frac{\text{tg } 32^{\circ} \times 18}{\text{tg } 65^{\circ} - \text{tg } 32^{\circ}}}{2} \approx 143 \text{ cm}^{2}$$

2. Opção (D)

$$-1548 = -360 \times 4 - 108$$
$$360 \div 10 = 36$$
$$108 \div 36 = 3$$
$$-1548^{\circ} = -360^{\circ} \times 4 - 36^{\circ} \times 3$$

A imagem do ponto B por meio de uma rotação de centro 0 e ângulo de amplitude -1548° é o ponto I.

3. Opção (B)

O ponto A tem coordenadas (3 cos 150°, 3 sen 150°).

$$\cos 150^\circ = \cos(180^\circ - 30^\circ) = -\cos 30^\circ = -\frac{\sqrt{3}}{2}$$

$$sen 150^\circ = sen(180^\circ - 30^\circ) = sen 30^\circ = \frac{1}{2}$$

ou seja, o ponto A tem coordenadas $\left(-\frac{3\sqrt{3}}{2},\frac{3}{2}\right)$, pelo que, as coordenadas do transformado do ponto A por uma meia-volta de centro 0 são $\left(\frac{3\sqrt{3}}{2}, -\frac{3}{2}\right)$.

4. Sabemos que as coordenadas do ponto C são $(cos(90^{\circ} + \beta), sen(90^{\circ} + \beta))$.

Sabe-se que, para um determinado valor de β , o polígono [OABC] tem área $\frac{5}{13}$, pelo que:

$$2 \times \frac{1 \times \text{sen}(90^{\circ} + \beta)}{2} = \frac{5}{13} \Leftrightarrow \text{sen}(90^{\circ} + \beta) = \frac{5}{13} \Leftrightarrow \text{cos}\beta = \frac{5}{13}$$
$$\text{sen}^{2} \beta + \text{cos}^{2} \beta = 1 \Leftrightarrow \text{sen}^{2} \beta + \left(\frac{5}{13}\right)^{2} = 1 \Leftrightarrow \text{sen}^{2} \beta = 1 - \frac{25}{169}$$
$$\Leftrightarrow \text{sen}^{2} \beta = \frac{144}{169}$$
$$\Leftrightarrow \text{sen} \beta = \pm \frac{12}{13}$$

Como $\beta \in]0^{\circ}$, 90° [, então sen $\beta = \frac{12}{13}$.

5. Opção (C)

 $\operatorname{sen} \alpha \times \operatorname{tg} \alpha > 0 \iff \operatorname{sen} \alpha \times \frac{\operatorname{sen} \alpha}{\operatorname{cos} \alpha} > 0 \iff \frac{\operatorname{sen}^2 \alpha}{\operatorname{cos} \alpha} > 0$

Como $sen^2\alpha \ge 0$, $\forall \alpha \in]-180^\circ$, 180° [, podemos concluir que $se\frac{sen^2\alpha}{\cos\alpha} > 0$, então $\cos\alpha > 0$, o que implica que $\alpha \in]-90^\circ, 90^\circ$ [.

Desta forma, e uma vez que $\frac{\cos\alpha}{1+\operatorname{tg}\alpha} < 0$, então $1+\operatorname{tg}\alpha < 0 \Leftrightarrow \operatorname{tg}\alpha < -1$, o que nos permite concluir que $\alpha \in]-90^\circ, -45^\circ[$ e, portanto, que $-150^\circ < \alpha - 60^\circ < -105^\circ.$

Assim, o ângulo de amplitude $\alpha-60^{\circ}$ pertence ao terceiro quadrante.

6.

6.1
$$\sin^2 \alpha + \cos(\pi - \alpha) + \frac{1}{9} = 0 \Leftrightarrow \sin^2 \alpha - \cos \alpha + \frac{1}{9} = 0$$

 $\Leftrightarrow 1 - \cos^2 \alpha - \cos \alpha + \frac{1}{9} = 0$
 $\Leftrightarrow \cos^2 \alpha + \cos \alpha - \frac{10}{9} = 0$
 $\Leftrightarrow \cos \alpha = \frac{-1 \pm \sqrt{1 - 4 \times 1 \times \left(-\frac{10}{9}\right)}}{2 \times 1}$
 $\Leftrightarrow \cos \alpha = \frac{-1 \pm \frac{7}{3}}{2}$
 $\Leftrightarrow \cos \alpha = -\frac{5}{3} \lor \cos \alpha = \frac{2}{3}$

$$-1 \le \cos \alpha \le 1, \forall x \in \mathbb{R}, \log \cos \alpha = \frac{2}{3}.$$

$$\sin^2 \alpha + \cos^2 \alpha = 1 \Leftrightarrow \sin^2 \alpha + \left(\frac{2}{3}\right)^2 = 1 \Leftrightarrow \sin^2 \alpha = 1 - \frac{4}{9}$$

$$\Leftrightarrow \sin^2 \alpha = \frac{5}{9}$$

$$\alpha \in \left]\frac{3\pi}{2}, 2\pi\right[$$
, logo sen $\alpha = -\frac{\sqrt{5}}{3}.$

$$\operatorname{tg} \alpha = \frac{-\frac{\sqrt{5}}{3}}{\frac{2}{3}} \iff \operatorname{tg} \alpha = -\frac{\sqrt{5}}{2}$$

6.2
$$3 \operatorname{sen}(3\pi + \alpha) + \cos^2\left(\frac{\pi}{2} - \alpha\right) + 2\operatorname{tg}(\alpha - 2\pi) = 3\operatorname{sen}(2\pi + \pi + \alpha) + (-\operatorname{sen}\alpha)^2 + 2\operatorname{tg}\alpha =$$

$$= 3\operatorname{sen}(\pi + \alpha) + \operatorname{sen}^2\alpha + 2\operatorname{tg}\alpha =$$

$$= -3\operatorname{sen}\alpha + \operatorname{sen}^2\alpha - \operatorname{tg}\alpha =$$

$$= -3\left(-\frac{\sqrt{5}}{3}\right) + \left(-\frac{\sqrt{5}}{3}\right)^2 + 2\left(-\frac{\sqrt{5}}{2}\right) =$$

$$= \sqrt{5} + \frac{5}{9} - \sqrt{5} =$$

$$= \frac{5}{9}$$

7. Opção (B)

$$D_f = \left\{ x \in \mathbb{R} : 1 + \cos\left(\frac{\pi}{2} - 2x\right) \neq 0 \right\} = \mathbb{R} \setminus \left\{ x : x = \frac{3\pi}{4} + k\pi, k \in \mathbb{Z} \right\}$$

Cálculo auxiliar
$$1 + \cos\left(\frac{\pi}{2} - 2x\right) = 0 \Leftrightarrow 1 + \sin(2x) = 0$$

$$\Leftrightarrow \sin(2x) = -1$$

$$\Leftrightarrow 2x = -\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x = \frac{3\pi}{4} + k\pi, k \in \mathbb{Z}$$

8.

8.1
$$g(x) = (\cos x - 1)^2 - \cos\left(\frac{\pi}{2} + \pi x\right) - 2\sin\left(\frac{3\pi}{2} - x\right) + 3\sin(\pi + \pi x) - 1 + \sin^2(-x) =$$

$$= \cos^2 x - 2\cos x + 1 - (-\sin(\pi x)) - 2(-\cos x) - 3\sin(\pi x) - 1 + \sin^2 x =$$

$$= \cos^2 x - 2\cos x + 1 + \sin(\pi x) + 2\cos x - 3\sin(\pi x) - 1 + \sin^2 x =$$

$$= \underbrace{\sin^2 x + \cos^2 x}_{1} - 2\cos x + 2\cos x + \sin(\pi x) - 3\sin(\pi x) + 1 - 1 =$$

$$= 1 + 0 - 2\sin(\pi x) + 0 =$$

$$= 1 - 2\sin(\pi x)$$

8.2 Opção (A)

$$P = \frac{2\pi}{|\pi|} = 2$$
$$f = \frac{1}{2}$$

9.
$$f\left(x - \frac{\pi}{2}\right) + f\left(x + \frac{\pi}{2}\right) = 3 + 5\cos\left(5\left(x - \frac{\pi}{2}\right) + \frac{\pi}{7}\right) + \left(3 + 5\cos\left(5\left(x + \frac{\pi}{2}\right) + \frac{\pi}{7}\right)\right) =$$

$$= 6 + 5\cos\left(5x - \frac{5\pi}{2} + \frac{\pi}{7}\right) + 5\cos\left(5x + \frac{5\pi}{2} + \frac{\pi}{7}\right) =$$

$$= 6 + 5\cos\left(5x + \frac{\pi}{7} - 2\pi - \frac{\pi}{2}\right) + 5\cos\left(5x + \frac{\pi}{7} + 2\pi + \frac{\pi}{2}\right) =$$

$$= 6 + 5\cos\left(5x + \frac{\pi}{7} - \frac{\pi}{2}\right) + 5\cos\left(5x + \frac{\pi}{7} + 2\pi + \frac{\pi}{2}\right) =$$

$$= 6 + 5\sin\left(5x + \frac{\pi}{7}\right) + \left(-5\sin\left(5x + \frac{\pi}{7}\right)\right) =$$

$$= 6 + 5\sin\left(5x + \frac{\pi}{7}\right) - 5\sin\left(5x + \frac{\pi}{7}\right) =$$

$$= 6 + 5\sin\left(5x + \frac{\pi}{7}\right) - 5\sin\left(5x + \frac{\pi}{7}\right) =$$

$$= 6 + 5\sin\left(5x + \frac{\pi}{7}\right) - 5\sin\left(5x + \frac{\pi}{7}\right) =$$

$$= 6 + 5\sin\left(5x + \frac{\pi}{7}\right) - 5\sin\left(5x + \frac{\pi}{7}\right) =$$

$$= 6 + 5\sin\left(5x + \frac{\pi}{7}\right) - 5\sin\left(5x + \frac{\pi}{7}\right) =$$

$$= 6 + 5\sin\left(5x + \frac{\pi}{7}\right) - 5\sin\left(5x + \frac{\pi}{7}\right) =$$

Daqui se conclui que para todo o valor real de x, $f\left(x-\frac{\pi}{2}\right)+f\left(x+\frac{\pi}{2}\right)=6$.

10.

10.1
$$A(\cos \beta, \sin \beta)$$
 $B(1, \operatorname{tg} \beta)$ $C(1, -\sin \beta)$ $D(\cos \beta, 0)$
 $Como \beta \in \left] -\frac{\pi}{2}, 0\right[, \cos \beta > 0 \text{ e sen } \beta < 0.$
 $\overline{AD} = -\sin \beta$
 $\overline{BC} = -\operatorname{tg} \beta - \sin \beta$
 $h = 1 - \cos \beta$
 $A_{[ABCD]} = \frac{-\operatorname{tg} \beta - \sin \beta + (-\sin \beta)}{2} \times (1 - \cos \beta) =$
 $= \frac{-\operatorname{tg} \beta - 2 \sin \beta}{2} \times (1 - \cos \beta) =$
 $= \frac{-\operatorname{tg} \beta + \operatorname{tg} \beta \times \cos \beta - 2 \sin \beta + 2 \sin \beta \times \cos \beta}{2} =$
 $= \frac{-\operatorname{tg} \beta + \sin \beta - 2 \sin \beta \times \cos \beta}{2} =$
 $= \frac{-\operatorname{tg} \beta - \sin \beta + 2 \sin \beta \times \cos \beta}{2} =$
 $= -\frac{\operatorname{tg} \beta - \sin \beta + 2 \sin \beta \times \cos \beta}{2} =$
 $= -\frac{\operatorname{tg} \beta + \sin \beta - 2 \sin \beta \cos \beta}{2} =$

10.2
$$\operatorname{sen}\left(-\frac{3\pi}{2} - \beta\right) - 2 \cos\left(\pi - \beta\right) = \frac{6}{5} \Leftrightarrow \cos\beta + 2 \cos\beta = \frac{6}{5}$$

 $\Leftrightarrow \cos\beta = \frac{2}{5}$
 $\operatorname{sen}^2\beta + \cos^2\beta = 1 \Leftrightarrow \operatorname{sen}^2\beta = 1 - \frac{4}{25}$
 $\Leftrightarrow \operatorname{sen}^2\beta = \frac{21}{25}$
 $\Leftrightarrow \operatorname{sen}\beta = \pm \frac{\sqrt{21}}{5}$

Como $\beta \in \left] -\frac{\pi}{2}$, $0 \right[$, então sen $\beta = -\frac{\sqrt{21}}{5}$.

$$tg \beta = \frac{-\frac{\sqrt{21}}{5}}{\frac{2}{5}} \Leftrightarrow tg \beta = -\frac{\sqrt{21}}{2}$$

Assim:

$$A(\beta) = -\frac{-\frac{\sqrt{21}}{2} + \left(-\frac{\sqrt{21}}{5}\right) - 2\left(-\frac{\sqrt{21}}{5} \times \frac{2}{5}\right)}{2} =$$

$$= -\frac{-\frac{\sqrt{21}}{2} - \frac{\sqrt{21}}{5} + \frac{4\sqrt{21}}{25}}{2} =$$

$$= \frac{\sqrt{21}}{4} + \frac{\sqrt{21}}{10} - \frac{4\sqrt{21}}{50} =$$

$$= \frac{25\sqrt{21}}{100} + \frac{10\sqrt{21}}{100} - \frac{8\sqrt{21}}{100} =$$

$$= \frac{27\sqrt{21}}{100}$$