

Exame Final Nacional de Matemática A Prova 635 | Época Especial | Ensino Secundário | 2025

12.º Ano de Escolaridade

Decreto-Lei n.º 55/2018, de 6 de julho Decreto-Lei n.º 62/2023, de 25 de julho
--

Duração da Prova: 150 minutos. | Tolerância: 30 minutos. | 8 Páginas

A prova inclui 12 itens, devidamente identificados no enunciado, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 6 itens da prova, apenas contribuem para a classificação final os 3 itens cujas respostas obtenham melhor pontuação.

Para cada resposta, identifique o item.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

A prova inclui um formulário.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

 $\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\text{do ângulo ao centro};\ r-\text{raio})$

Área lateral de um cone: $\pi r g (r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3$ (r - raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho \ e^{i\theta}} = \sqrt[n]{\rho} \ e^{i\frac{\theta + 2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \ e \ n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

*** 1.** Seja (u_n) uma sucessão tal que $\lim u_n = 0$.

Qual das expressões seguintes pode ser termo geral de (u_n) ?

- (A) $\frac{2-n^2}{n}$ (B) $(-2)^n$
- (C) $\left(-\frac{1}{2}\right)^n$
- **(D)** 2n + 3
- **2.** Seja (a_n) a progressão aritmética, de termos positivos, tal que $a_{10}-a_4=3$ e $a_4\times a_{10}=40$.

Sabe-se que 173 é termo da sucessão (a_n) .

Determine a ordem desse termo.

3. Seja f a função, de domínio $]-\infty,1[$, definida por $f(x)=2x+3+\ln\left((1-x)^3\right)$, e seja g a função, de domínio] $-\infty$, 1[, definida por $g(x) = \frac{f(x)}{x-1}$.

Resolva os itens 3.1., 3.2. e 3.3. sem recorrer à calculadora, exceto em eventuais cálculos numéricos.

3.1. Estude a função f quanto à monotonia e quanto à existência de extremos relativos.

Na sua resposta, apresente os intervalos de monotonia e o(s) valor(es) de x em que a função f tem extremo(s) relativo(s).

- 3.2.) Estude a função g quanto à existência de assíntotas ao seu gráfico, paralelas aos eixos coordenados e, caso existam, escreva uma equação de cada assíntota.
 - **3.3.** Mostre que a equação f(x) = g(0) é possível no intervalo]-6, -5[.
- **4.** Na Figura 1, estão representados, em referencial o.n. Oxy, o retângulo [OABC] e os segmentos de reta [CD] e [DB].

Sabe-se que:

- o ponto A pertence ao semieixo positivo Ox;
- o ponto C pertence ao semieixo positivo Oy;
- o ponto D pertence ao segmento de reta [OA];
- $\overline{OC} = 8$ e $\overline{OA} = 15$:
- $\overrightarrow{DC} \cdot \overrightarrow{DB} = 50$:
- $\overline{OD} < \overline{DA}$.

Determine as coordenadas do ponto D .

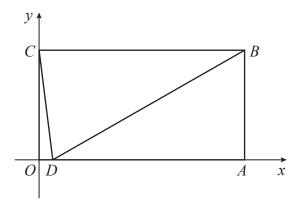


Figura 1

5. A Maria tem um plano de treinos de corrida. Em cada treino, utiliza uma aplicação que regista a distância percorrida e a energia gasta.

No diagrama de dispersão da Figura 2, apresentam-se os valores registados em alguns desses treinos, sendo x a distância percorrida, em quilómetros, e y a correspondente energia gasta, em quilocalorias.

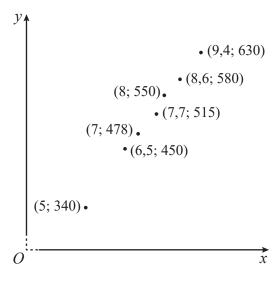


Figura 2

Complete o texto seguinte, selecionando a opção correta para cada espaço, de acordo com os dados apresentados no diagrama de dispersão.

Escreva, na folha de respostas, apenas cada um dos números, I, II, III e IV, seguido da opção, a), b) ou c), selecionada. A cada espaço corresponde uma só opção.

Nos treinos cujos registos se apresentam, a Maria percorreu, em média, cerca de ____I __ quilómetros por treino (valor arredondado às décimas). Neste conjunto de treinos, a mediana das quilocalorias gastas foi ____I __ .

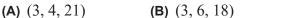
Admitindo a validade do modelo de regressão linear de y em função de x obtido a partir dos dados representados no diagrama, verifica-se uma correlação ______ entre a distância percorrida e as quilocalorias gastas por treino. Com base nesse modelo e utilizando as estimativas dos parâmetros arredondadas às milésimas, estima-se que a Maria, num treino em que percorra 6 quilómetros, gaste, aproximadamente, ______ quilocalorias (valor arredondado às unidades).

I	II	111	IV			
a) 7,5	a) 506	a) negativa forte	a) 408			
b) 7,7	b) 515	b) positiva fraca	b) 411			
c) 9,4	c) 630	c) positiva forte	c) 415			

6. Na Figura 3, está representado, em referencial o.n. Oxyz , o prisma reto de bases quadradas [ABCDEFGH].

Sabe-se que:

- a base [ABCD] está contida no plano de equação x = 3;
- o vértice F tem coordenadas (-9, 0, 2);
- o plano CDEé definido pela equação 5y + 2z - 62 = 0.
- **6.1.** Em qual das opções seguintes se apresentam as coordenadas de um ponto pertencente à reta CD?



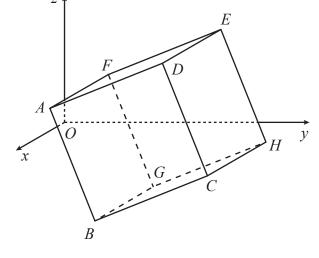


Figura 3

- **(C)** (2, 4, 21)
- **(D)** (2, 6, 18)

6.2. Resolva este item sem recorrer à calculadora.

Determine o volume do prisma [ABCDEFGH] .

🜟 7. O paracetamol é um fármaco indicado quer para aliviar as dores leves e moderadas, quer para controlar a febre.

Admita que a concentração de paracetamol, em miligramas por litro de sangue, t horas após a administração de uma determinada dose terapêutica de paracetamol, é dada, aproximadamente, por

$$C(t) = 125(e^{-0.2t} - e^{-t}), \text{ com } t > 0$$

Admita ainda que, para produzir efeito terapêutico significativo, a concentração de paracetamol tem de ser superior a 15 miligramas por litro de sangue.

Determine, recorrendo à calculadora, durante quanto tempo, após a administração da referida dose terapêutica, o paracetamol produz efeito terapêutico significativo.

Apresente o resultado em horas e minutos, com os minutos arredondados às unidades.

Não justifique a validade do resultado obtido na calculadora.

Na sua resposta:

- apresente uma condição que lhe permita resolver o problema;
- represente, em referencial cartesiano, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora e assinale o(s) ponto(s) relevante(s) para a resolução da condição;
- apresente a(s) coordenada(s) relevante(s) desse(s) ponto(s) arredondada(s) às milésimas.

- 8. Numa assembleia de alunos de uma escola secundária, estão presentes alunos de vários anos de escolaridade. Dos alunos presentes, 25 são do 12.º ano e, destes, 10 frequentam a disciplina de Matemática A.
- **8.1.** Seleciona-se, ao acaso, um aluno presente na assembleia.

Sabe-se que a probabilidade de esse aluno não ser do 12.º ano ou não frequentar a disciplina de Matemática A é igual a $\frac{9}{11}$.

Determine o número de alunos presentes na assembleia.

* 8.2. Dos alunos do 12.º ano presentes, vão ser selecionados três alunos, ao acaso, para integrarem a mesa da assembleia.

Qual é a probabilidade de, pelo menos, um desses alunos frequentar a disciplina de Matemática A?

- (A) $\frac{6}{115}$
- (B) $\frac{21}{460}$ (C) $\frac{369}{460}$ (D) $\frac{109}{115}$
- 9. Relativamente aos alunos do 11.º ano de uma escola, sabe-se que:
 - o número de alunos que frequentam a disciplina de Filosofia é o dobro do número de alunos que frequentam a disciplina de Economia A;
 - o número de alunos que frequentam, pelo menos, uma dessas disciplinas é o triplo do número de alunos que frequentam as duas disciplinas.

Seleciona-se, ao acaso, um aluno do 11.º ano dessa escola.

Determine a probabilidade de esse aluno não frequentar a disciplina de Economia A, sabendo-se que frequenta a disciplina de Filosofia.

Apresente o resultado na forma de fração irredutível.

10. Resolva este item sem recorrer à calculadora.

Considere as funções $f \in g$, de domínio $]0, \pi[$, definidas, respetivamente, por

$$f(x) = \sin^3 x$$
 e por $g(x) = \sin x \cos^2 x$

Determine as coordenadas dos pontos de intersecção dos gráficos das funções $f \, {
m e} \, g$.

11. Considere uma função, f , de domínio $\mathbb R$, duas vezes diferenciável, e a função f'' , segunda derivada da função f.

Sabe-se que:

- $f''(x) \ge 0 \Leftrightarrow x \ge \frac{3}{4}$;
- a função f'' tem exatamente dois zeros: $\frac{3}{4}$ e 3 ;
- as retas r e s são tangentes ao gráfico da função f nos pontos de abcissas -2 e -1, respetivamente.

Considere as proposições seguintes.

- I. O gráfico da função f tem dois pontos de inflexão, de abcissas $\frac{3}{4}$ e 3 .
- II. O declive da reta r é menor do que o declive da reta s.

Justifique que as proposições I e II são falsas.

Na sua resposta, apresente, para cada uma das proposições, uma razão que justifique a sua falsidade.

- **12.** Seja w um número complexo, de argumento θ , com $\theta \in \left|\frac{\pi}{2}, \pi\right|$.
- **12.1.** Qual das expressões seguintes é um argumento de $\frac{i^{23} \times w^2}{w}$?
 - (A) $\theta + \pi$

- (B) $\theta + \frac{3\pi}{2}$ (C) $3\theta + \pi$ (D) $3\theta + \frac{3\pi}{2}$
- 12.2. Resolva este item sem recorrer à calculadora.

Sabe-se que o número complexo $\,w\,$ é uma das soluções da equação

$$(1-i)z^3 - 8\sqrt{2}e^{i\frac{\pi}{4}} = 0$$

Determine w.

Apresente o resultado na forma a+bi, com $a,b \in \mathbb{R}$.

13. Seja f uma função, de domínio $\mathbb R$, positiva e duas vezes diferenciável, cujo gráfico tem concavidade voltada para cima e cuja primeira derivada não se anula.

Seja g a função, de domínio \mathbb{R} , definida por $g(x) = [f(x)]^2$.

Estude a função g quanto ao sentido das concavidades do seu gráfico.

COTAÇÕES

As pontuações obtidas nas respostas a estes 12 itens da prova contribuem obrigatoriamente para a classificação final.	1.	3.1.	3.2.	5.	6.1.	6.2.	7.	8.1.	8.2.	11.	12.1.	13.	Subtotal
Cotação (em pontos)	12	14	14	12	12	14	14	14	12	14	12	14	158
Destes 6 itens, contribuem para a classificação final da prova os 3 itens cujas respostas obtenham melhor pontuação.	2	2. 3.3.		4. 9.).	10.		12.2.		Subtotal		
Cotação (em pontos)	3 × 14 pontos									42			
TOTAL									200				