Proposta de Avaliação – Matemática 8.º ano

Nome: RESERVADO AO PROFESSOR		N.º:	Turma:	Data:	- 05 - 2025	MX 8
Conhecimentos e compreensão de conceitos e procedimentos matemáticos CP (50%)			ção Matemática	Classi	ficação Final	Petra.
				O Prof	essor:	
ENCARREGADO DE EDUCAÇÃO	-	Tomei con	hecimento:	-		

Utiliza apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risca aquilo que pretendes que não seja classificado.

É permitido o uso de calculadora científica.

Nas questões de escolha múltipla assinala apenas com X a opção correta.

Apresenta o teu raciocínio de forma legível e claro, indicando todos os cálculos que tiveres de efetuar e todas as justificações necessárias.

1. Considera o seguinte conjunto.

$$A = \left\{ -\frac{3}{5} ; \frac{1}{3} ; \frac{6}{15} ; 2, (4); \sqrt[3]{-3} ; \sqrt{0.09} \right\}$$

Indica o valor lógico de cada uma das seguintes afirmações.

	Verdadeiro	Falso
I. No conjunto A existem quatro números racionais.		
II. O número 2, (4) é uma dízima infinita periódica.		
III. No conjunto <i>A</i> existem dois números que podem ser escritos na forma de fração decimal.		
IV. Os números $-\frac{3}{5}$ e $\frac{\sqrt{0,09}}{2^{-1}}$ são simétricos.		
V. O número $\sqrt[3]{-3}$ é uma dízima infinita não periódica.		

2. Calcula o valor numérico da seguinte expressão:

$$\frac{1}{3} - \frac{1}{2} \times \left(-\frac{4}{3} \right)^2 + \sqrt{-\frac{2}{3}} : (-6)$$

3. As exportações de calçado português para os Estados Unidos da América, em 2024, foram de dois milhões de pares, o que corresponde a um valor de 94 milhões de euros.

Considera que o governo americado aplicou uma tarifa de 20% ao calçado *made in* Portugal.

Qual dos seguintes valores corresponde à receita obtida pelo estado americano, em euros, escrita em notação científica?

Α.	1,88	×	10^{4}

B.
$$18.8 \times 10^6$$

C.
$$1.88 \times 10^7$$

D.
$$1.88 \times 10^9$$

4. A mãe do Lourenço e da Rita comprou uma caixa de bombons. O Lourenço tirou metade dos bombons da caixa para si e a Rita tirou, para si, a terça parte dos bombons que ficaram na caixa. Sabendo que na caixa ficaram 16 bombons, qual das seguintes equações permite determinar o número de bombons que estavam inicialmente na caixa?

5. Indica, usando os números de 1 a 8, a sequência que permite resolver corretamente a equação:

$$1 - \frac{x-2}{3} = \frac{1}{2} \left(x - \frac{1}{3} \right)$$

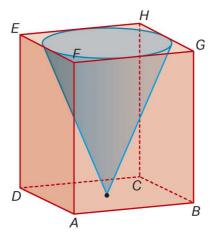
$$\Leftrightarrow \frac{6}{6} - \frac{2x}{6} + \frac{4}{6} = \frac{3x}{6} - \frac{1}{6}$$

$$S = \left\{\frac{11}{5}\right\}$$

7
$$\Leftrightarrow 1 - \frac{x}{3} + \frac{2}{3} = \frac{1}{2}x - \frac{1}{6}$$

Sequência:

6. O sólido geométrico representado na figura é formado pelo prisma quadrangular regular [ABCDEFGH], ao qual foi retirado um cone.



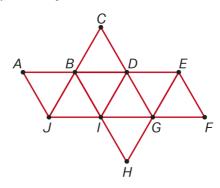
Sabe-se que:

- a base do cone é tangente aos lados do quadrado [EFGH];
- o vértice do cone coincide com o ponto médio da face [ABCD];
- a geratriz do cone mede 13 cm;
- a área da face [ABCD] é 100 cm².
- **6.1.** Calcula a altura, h, do cone, usando o Teorema de Pitágoras.
- **6.2.** Determina o volume do sólido geométrico.

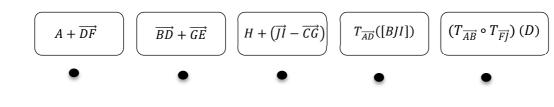
Apresenta o resultado em centímetros cúbicos, arredondado às unidades.

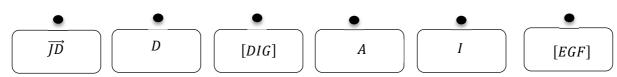
Mostra como chegaste à tua resposta.

Na figura está representada a planificação de um octaedro.



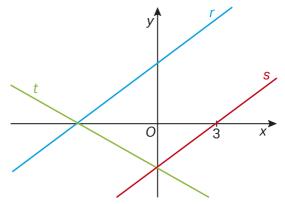
7.1. Associa de modo a obteres igualdades verdadeiras.





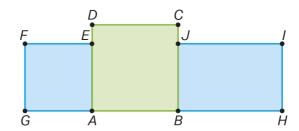
7.2. Qual é o transformado do triângulo [BDC] pela reflexão deslizante de eixo AE e vetor \overrightarrow{FG} ?

- [AJB] **C.** [BJI][DGE]B. [EGF]
- 8. Na figura, estão representadas, em referencial cartesiano, as retas r, s e t . Sabe-se que:
 - as retas r e s são paralelas;
 - a equação da reta $r \notin y = \frac{3}{4}x + 3$;
 - ullet a reta t passa no ponto de interseção da reta rcom o eixo Ox e no ponto de interseção da reta s com o eixo 0y.
 - **8.1.** Qual das seguintes equações define a reta s?



- **A.** $y = \frac{3}{4}x 3$ **B.** 3y = 4x 9 **C.** 4y = 3x 9 **D.** $x = \frac{4}{3}y 3$
- **8.2.** Escreve a equação da reta t na forma y = ax + b.

9. A figura abaixo é formada por dois quadrados e um retângulo.



Sabe-se que:

- o quadrado [ABCD] tem área x^2 , com x > 2;
- $\overline{DE} = \overline{CJ} = 2$
- o perímetro do quadrado [ABCD] é igual ao perímetro do retângulo [BHIJ].
- 9.1. Qual das seguintes expressões corresponde ao perímetro da figura?
- **B.** 8x 2
- **C.** 8x + 2
- **D.** 8x
- **9.2.** Escreve, na forma de polinómio reduzido, a expressão que representa a área da parte da figura colorida a azul.

Apresenta todos os cálculos que efetuares.

10. Um clube de ginástica acrobática realizou um espetáculo para comemorar o 25 de Abril. Foram colocados à venda dois tipos de bilhetes, para adultos e para crianças. Seja x o número de bilhetes de adulto e y o número de bilhetes de criança que foram vendidos.

Sabe-se que, no total, foram vendidos 420 bilhetes e o número de bilhetes de criança foi a quinta parte do número de bilhetes de adulto vendidos.

Escreve um sistema de equações cuja resolução permita determinar o número de bilhetes de adulto e o número de bilhetes de criança vendidos.

Resolve o sistema.

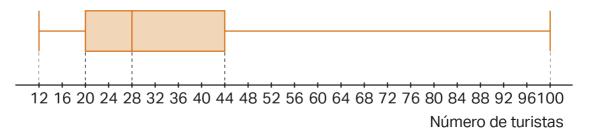
11. O Arquipélago das Berlengas é um arquipélago português, composto por ilhas graníticas, situado no oceano Atlântico, 15 km a oeste do Cabo Carvoeiro, em Peniche.

Há várias empresas turísticas que fazem a viagem, de barco, entre Peniche e as Berlengas.

Na tabela abaixo estão registados o número de turistas que foram em cada embarcação, ao longo de um fim-de-semana.

100	70	20	25	30	12	50	60	18	50
15	40	30	24	25	30	18	12	41	20

Com os dados recolhidos construiu-se o diagrama de extremos e quartis da seguinte figura.



Completa o texto seguinte, selecionando a opção correta para cada espaço, de acordo com os dados representados no diagrama de extremos e quartis da figura.

Escreve, na folha de respostas, apenas cada um dos números I, II, III e IV, seguido da opção a), b) ou c), selecionada. A cada espaço corresponde uma só opção.

A mediana do número de turistas por embarcação é ____I__, a amplitude é ____II___ e a amplitude interquartil é ____III___.

A média do número de turistas por viagem é ____IV___.

I	II	III	IV
a) 20	a) 100	a) 28	a) 28
b) 28	b) 24	b) 24	b) 40
c) 44	c) 88	c) 44	c) 35

12. Um saco contém bolas de quatro cores: brancas, pretas, azuis e vermelhas. Considera a experiência que consiste em retirar, ao acaso, uma bola do saco e registar a sua cor.

Considera a tabela de probabilidades associada a esta experiência.

Resultado	Branca	Preta	Azul	Vermelha
Probabilidade	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{1}{3}$	k

12.1. Qual é a probabilidade de sair uma bola vermelha?

- A. $\square \frac{1}{2}$ B. $\square \frac{1}{3}$ C. $\square \frac{1}{4}$

12.2. Sabendo que no saco estão 8 bolas azuis, determina o número total de bolas que estão no saco.

*** FIM ***

COTAÇÕES

Item	1.	2.	3.	4.	5.	6.1.	6.2.	7.1.	7.2.	8.1.	8.2.	9.1.	9.2.	10.	11.	12.1.	12.2.	Total
Cotação	5	6	5	5	7	7	7	5	5	5	6	5	9	9	4	5	5	100
Domínio	СМ	СР	СМ	СМ	СР	СР	RP	СР	СР	СМ	СР	СР	RP	RP	СР	СР	RP	

Proposta de resolução

1. I.
$$-F$$
; II. $-V$; III. $-F$; IV. $-V$ e V. $-V$

2.
$$\frac{1}{3} - \frac{1}{2} \times \left(-\frac{4}{3} \right)^2 + \sqrt{-\frac{2}{3} : (-6)} = \frac{1}{3} - \frac{1}{2} \times \frac{16}{9} + \sqrt{\frac{2}{18}} = \frac{1}{3} - \frac{16}{18} + \sqrt{\frac{1}{9}} = \frac{1}{3} - \frac{8}{9} + \frac{1}{3} = \frac{3}{9} - \frac{8}{9} + \frac{3}{9} = -\frac{2}{9}$$

3. 94 milhões = 94×10^6

$$94 \times 10^6 \times 0.2 = 18.8 \times 10^6 = 1.88 \times 10^7$$

Resposta: C.

4. Seja x o número de bombons que estavam inicialmente na caixa.

O Lourenço tirou $\frac{1}{2}x$ e a Rita tirou $\frac{1}{3} \times \frac{1}{2}x = \frac{1}{6}x$.

Uma equação que traduz o problema é $x - \frac{1}{2}x - \frac{1}{6}x = 16$.

Resposta: B.

5. $1 - \frac{x-2}{3} = \frac{1}{2} \left(x - \frac{1}{3} \right) \Leftrightarrow 1 - \frac{x}{3} + \frac{2}{3} = \frac{1}{2} x - \frac{1}{6} \Leftrightarrow \frac{6}{6} - \frac{2x}{6} + \frac{4}{6} = \frac{3x}{6} - \frac{1}{6}$ $\Leftrightarrow 6 - 2x + 4 = 3x - 1 \Leftrightarrow -2x - 3x = -1 - 6 - 4$ $\Leftrightarrow -5x = -11 \Leftrightarrow x = \frac{11}{5}$

$$S = \left\{ \frac{11}{5} \right\}$$

Sequência:

- 4 7 1 3 5 2 8 6
- **6.1.** A área da face [ABCD] é 100 cm², logo $\overline{AB} = \sqrt{100} = 10$ cm, pelo que o raio da base do cone mede 5 cm.

Seja h a altura do cone, em centímetros.

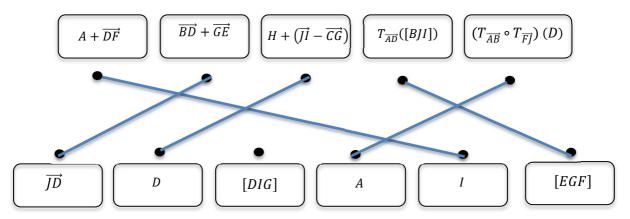
Pelo Teorema de Pitágoras, tem-se:

$$g^2 = h^2 + r^2 \Longleftrightarrow 13^2 = h^2 + 5^2 \Longleftrightarrow h^2 = 169 - 25 \Longleftrightarrow h^2 = 144 \Longleftrightarrow h = \pm \sqrt{144} \Longleftrightarrow h = \pm 12$$

Como h > 0, h = 12 cm.

6.2.
$$V_{\text{s\'olido}} = V_{\text{prisma}} - V_{\text{cone}} = 100 \times 12 - \frac{1}{3} \times \pi \times 5^2 \times 12 = 1200 - 100\pi \approx 886 \text{ cm}^3$$

7.1.



7.2. Resposta: B.

8.1. $a_s = a_r = \frac{3}{4}$, pois as retas s e r são paralelas.

 $y = \frac{3}{4}x + b$ e como passa no ponto (3,0), tem-se:

$$0 = \frac{3}{4} \times 3 + b \iff b = -\frac{9}{4}$$

Assim, a equação da reta $s \notin y = \frac{3}{4}x - \frac{9}{4} \Longleftrightarrow 4y = 3x - 9$.

Resposta: C.

8.2. A reta *t* passa nos pontos (-4,0) e $(0,-\frac{9}{4})$.

O declive da reta $t \notin a = \frac{-\frac{9}{4} - 0}{0 - (-4)} = -\frac{9}{16} \in b = -\frac{9}{4}$.

Logo,
$$t: y = -\frac{9}{16}x - \frac{9}{4}$$
.

9.1. Tem-se que: $\overline{AB} = x$, $\overline{AG} = x - 2$ e $\overline{BH} = x + 2$

$$P_{\text{figura}} = 3 \times (x - 2) + x + x + 2 + x - 2 + x + 2 + 2 + x + 2 = 8x$$

Resposta: D.

9.2.
$$A_{\text{azul}} = (x-2)^2 + (x-2)(x+2) = x^2 - 4x + 4 + x^2 - 4 = 2x^2 - 4x$$

10.

$$\begin{cases} x + y = 420 \\ y = \frac{x}{5} \end{cases} \Leftrightarrow \begin{cases} x + y = 420 \\ x = 5y \end{cases} \Leftrightarrow \begin{cases} 5y + y = 420 \\ x = 5y \end{cases}$$

$$\Leftrightarrow \begin{cases} 6y = 420 \\ x = 5y \end{cases} \Leftrightarrow \begin{cases} y = \frac{420}{6} \\ x = 5y \end{cases} \Leftrightarrow \begin{cases} y = 70 \\ x = 350 \end{cases}$$

Foram vendidos 350 bilhetes de adulto e 70 bilhetes de criança.

- 11. l. b)
 - II. c)
 - III. -b)
 - IV. c)
- 12.1. Tem-se que:

$$\frac{1}{4} + \frac{1}{6} + \frac{1}{3} + k = 1 \iff k = \frac{12}{12} - \frac{3}{12} - \frac{2}{12} - \frac{4}{12} \iff k = \frac{3}{12} \iff k = \frac{1}{4}$$

Resposta: C.

12.2. Seja n o número total de bolas no saco.

$$P(\text{sair uma bola azul}) = \frac{1}{4} \iff \frac{8}{n} = \frac{1}{4} \iff n = 32$$

No saco estão 32 bolas.

