

Matemática Ficha de Trabalho

Probabilidades 12º ano - FT4

Exercício 1

Demonstre que, para quaisquer acontecimentos A e B;

1.1.
$$P(A \cup B) + P(\overline{A}) = P(B) + P(\overline{A} \cup \overline{B})$$

1.2.
$$P(A) + P(B) + P(\overline{A} \cap \overline{B}) = 1 + P(A \cap B)$$

1.3.
$$P(A | B) + P(\overline{A} | B) = 1$$

1.4.
$$P[(A \cup B) | C] = P(A | C) + P(B | C) - P[(A \cap C) | C]$$

1.5.
$$P(A \mid B) = 1 + \frac{P(\overline{A} \cap \overline{B}) - P(\overline{A})}{P(B)}, \quad P(B) \neq 0$$

Exercício 2

Acerca dos acontecimentos A, B e C sabe-se que: P(A) = 0.2; P(B) = 0.5 E P(C) = 0.3.

2.1. Mostre que:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

2.2. Calcule $P(A \cup B \cup C)$ admitindo que A, B e C são acontecimentos independentes.

Exercício 3

Mostre que se A e B são dois acontecimentos, se tem:

$$P(A \cap B) \le P(A) \le P(A \cup B)$$

Exercício 4

Sejam A e B dois acontecimentos possíveis de uma experiência aleatória. Sabendo que A e B são independentes, prove que:

4.1.
$$P(\overline{A} \cap \overline{B}) + P(A) \times P(\overline{B}) = P(\overline{B})$$

4.2
$$P(A \cup B) = 1 - P(\overline{A}) \times P(\overline{B})$$

Exercício 5

Seja S o conjunto de resultados (com número finito de elementos) associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos

Sabe-se que:

-
$$P(A) = 2P(B)$$

$$-P(A \cup B) = 3P(B)$$

Prove que os acontecimentos A e B são incompatíveis.

Exercício 6

Num saco existem quinze bolas, indistinguíveis ao tacto. Cinco bolas são azuis, cinco são vermelhas e cinco são pretas. Para cada uma das cores, as bolas estão numeradas de 1 a 5.

6.1. Retirando todas as bolas do saco e dispondo-as, ao acaso, numa fila, qual é a probabilidade de as bolas da mesma cor ficarem todas juntas?

Apresente o resultado na forma de dízima, com oito casas decimais.

6.2. Suponha agora que, no saco, estão apenas algumas das quinze bolas.

Nestas novas condições, admita que, ao retirarmos, ao acaso, uma bola do saco, se tem:

- a probabilidade de essa bola ser azul é 42 %
- a probabilidade de essa bola ter o número 2 é 21 %
- a probabilidade de essa bola ser azul ou ter o número 2 é 53%
- **6.2.1.** Prove que a bola azul número 2 ficou dentro do saco.
- **6.2.2.** Determine quantas bolas ficaram no saco.

Exercício 7

Seja S o espaco de resultados (com número finito de elementos) associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos

Sabe-se que:

$$P(A \cap B) = 0.2$$

$$P(A \cup B) = 0.9$$

$$P(A | B) = 0.4$$

A probabilidade de \overline{A} é:

- (A) 0.5
- **(B)** 0.4
- (C) 0,3
- (D) 0,2

Exercício 8

Seia S o conjunto de resultados (com número finito de elementos) associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos, contidos em S, nenhum deles impossível, nem certo. Sabe-se que $A \subset B$.

Indique qual das afirmações seguintes é verdadeira:

- **(A)** P(A) > P(B) **(B)** $P(A \cap B) = 0$ **(C)** $P(A \cup B) = 1$ **(D)** $P(\overline{A}) \ge P(\overline{B})$

Exercício 9

- 9. Nos jogos de futebol entre a equipa X e a equipa Y, a estatística revela que:
- em 20% dos jogos, a equipa X é a primeira a marcar;
- em 50% dos jogos, a equipa Y é a primeira a marcar.

Qual é a probabilidade de, num jogo entre a equipa X e a equipa Y, não se marcarem golos?

- (A) 10%
- **(B)** 25%
- (C) 30%
- **(D)** 35%

Lança-se um dado cúbico até sair face 6.

A probabilidade de serem necessários pelo menos dois lançamentos é

- (A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{2}{3}$

Exercício 11

Extrai-se, ao acaso, uma bola de uma caixa que contém 12 bolas, numeradas de 1 a 12. Considere os acontecimentos:

A: " a bola extraída tem número par "

B: " a bola extraída tem número múltiplo de 3 "

A probabilidade p (B/A) é igual a:

- (A) $\frac{1}{2}$ (B) $\frac{1}{4}$
- (c) $\frac{1}{5}$

Exercício 12

Observou-se que $\frac{5}{9}$ dos alunos do 12°C usavam jeans, $\frac{1}{4}$ usavam T-shirt e, dos que usavam T-shirt, metade usavam jeans. Escolheu-se aleatoriamente um aluno do 12°C. Pode afirmar-se que a probabilidade de ele não trazer jeans nem T-shirt é:

- (A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$

Exercício 13

Um jovem à procura do primeiro emprego candidatou-se às vagas existentes em duas empresas E_1 e E_2 .

Segundo o departamento de recursos humanos da empresa E₁, a probabilidade de ser contratado é 60%, enquanto na empresa E₂ a probabilidade de ser contratado é de 35%.

Sabendo que a contratação do jovem pela empresa E₁ é independente da sua contratação pela empresa E2, qual é a probabilidade do jovem ser contratado?

(A) 74%

(B) 95%

(C) 70%

(D) 86%

Exercício 14

A turma D do 12º ano tem 16 raparigas e 12 rapazes. Dos 15 alunos dessa turma que têm Física, apenas 5 são raparigas.

Qual a probabilidade de escolher, nessa turma, um aluno que não tenha Física, sabendo que é rapaz?

(A) $\frac{1}{6}$ (B) $\frac{1}{14}$ (C) $\frac{5}{6}$

Exercício 15

Um estudo feito a uma certa marca de iogurtes revelou que:

- Se um ioqurte está dentro do prazo de validade, a probabilidade de estar estragado é 0,005;
- Se um ioqurte está fora do prazo de validade, a probabilidade de estar estragado é 0,65.

Considere que, num certo dia, uma mercearia tem dez ioqurtes dessa marca, dos quais dois estão fora do prazo.

Escolhendo, ao acaso, um desses dez iogurtes, qual a probabilidade de ele estar estragado?

Exercício 16

Considere a experiência aleatória que consiste em lançar duas vezes um dado tetraédrico numerado de um a quatro, e anotar o número da face virada para baixo.

Sejam A e B os acontecimentos:

A: " pelo menos num dos lançamentos saiu a face dois"

B: " a soma dos pontos obtidos nos dois lançamentos é cinco"

A probabilidade de acontecer **B** sabendo que aconteceu **A** é:

(A) $\frac{2}{7}$ (B) $\frac{1}{4}$ (C) $\frac{1}{8}$

Exercício 17

Uma urna A tem 2 bolas amarelas e 4 pretas. Uma outra urna, B, tem 3 bolas amarelas e 2 pretas. Retira-se uma bola da urna A e coloca-se na B. De seguida, retira-se uma bola de B.

- 17.1. Qual a probabilidade de sair amarela em B, tendo saído preta em A?
- 17.2. Qual a probabilidade de sair preta em B?

Exercício 18

Num bar trabalham 3 empregados: o Rui, o Ricardo e o Nuno. O Rui serve 40% dos clientes e os outros dois empregados dividem entre si a restante clientela. Ao pedir uma cerveja, o acompanhamento desta por tremoços é deixada ao critério do empregado. O Rui traz tremoços em 10% das vezes, o Ricardo em 40% dos casos e o Nuno em 20% das vezes. Ao pedir uma cerveja, calcule a probabilidade de que esta venha acompanhada de tremoços.

Exercício 19

Seja S o espaço de resultados associado a uma experiência aleatória. Sejam A e B dois acontecimentos possíveis. Prove que:

19.1.
$$P(\overline{A} \cap \overline{B}) = P(\overline{A}) - P(B) + P(A/B) \times P(B)$$

- 19.2. Das raparigas que moram em Vale do Rei, sabe-se que:
- A quarta parte tem olhos verdes;
- A terca parte tem cabelo louro;
- Das que têm cabelo louro, metade tem olhos verdes.

Escolhendo aleatoriamente uma rapariga de Vale de Rei, qual é a probabilidade de ela não ser loura nem ter olhos verdes? Sugestão: se lhe for útil, pode utilizar a igualdade enunciada na alínea anterior para resolver o problema.

Exercício 20

Seja S o espaço de resultados associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos possíveis), com P(A)> 0 e \overline{A} e \overline{B} os acontecimentos contrários de A e de B, respectivamente.

20.1. Mostre que:

$$\frac{P(\overline{B}) - P(\overline{A} \cap \overline{B})}{P(A)} = 1 - P(B/A)$$

- **20.2.** Próximo de uma praia portuguesa, realiza-se um acampamento internacional de juventude, no qual participam jovens de ambos os sexos. Sabe-se que:
 - a quarta parte dos jovens são portugueses, sendo os restantes estrangeiros;
 - 52% dos jovens participantes no acampamento são do sexo feminino;
 - considerando apenas os participantes portugueses, 3 em cada 5 são rapazes.

No último dia, a organização vai sortear um prémio, entre todos os jovens participantes no acampamento. Qual é a probabilidade de o prémio sair a uma rapariga estrangeira? Apresente o resultado na forma de percentagem.

Nota: Se desejar, pode utilizar a igualdade da alínea anterior (nesse caso, comece por identificar claramente, no contexto do problema, os acontecimentos A e B); no entanto, pode optar por resolver o problema por outro processo (como, por exemplo, através de uma tabela de dupla entrada ou de um diagrama em árvore).