

Matemática Ficha de Trabalho

Probabilidades 12º ano - FT3

Exercício 1

Será a moeda viciada?

Numa turma de 32 alunos realizou-se a seguinte experiência: cada um dos alunos lançou uma moeda de 1 euro 100 vezes. Os resultados obtidos são os seguintes:

	Rita	Outros 2 alunos	Outros 4 alunos	Outros 6 alunos	Restantes 19 alunos	Totais
Caras	46	101	197	302	960	1606
Euros	54	99	203	298	940	1594
Totais	100	200	400	600	1900	3200

1.1. Calcule as frequências relativas respeitantes aos resultados, como sugere a tabela sequinte:

	Rita	Outros 2 alunos	Outros 4 alunos	Outros 6 alunos	Restantes 19 alunos	Totais
Caras	0,46	0,49				
Euros	0,54	0,51				
Totais		1				

1.2. Faça dois gráficos em que considere em abcissas o número de lançamentos desde 100 até 3200 e em ordenadas, para cada um, as respectivas frequências relativas (do acontecimento «sair cara» e também do acontecimento «sair euro»).

Observe como evoluem as frequências relativas de cada uma das faces à medida que aumenta o número de jogadas. Registe as conclusões.

Exercício 2

Verificaram-se experimentalmente para um dado " rapa", as seguintes probabilidades:

- p (R) = 0.28Rrapa
- p (T) = 0,19Ttira
- p (P) = 0,38PPpõe
- p (D) = 0,15......D....deixa
- **2.1.** Este rapa é equilibrado? Justifique.

- **2.2.** Calcule a probabilidade de obter "rapa ou põe".
- 2.3. Em 5000 lançamentos, quantas vezes esperaria obter "tira"?

Exercício 3

A polícia de trânsito pretende saber se os automobilistas param quando o sinal passa de verde para laranja. Um estudo encomendado deu os seguintes resultados:

Nº de passagens do sinal para laranja	50	100	200	400	800	1600	3500	4000	10000
Nº de veículos que pararam ao sinal laranja	25	45	105	190	350	728	1582	1804	n

Qual o valor que sugere para n? Num pequeno texto justifique a resposta.

Exercício 4

Lança-se uma moeda quatro vezes. $\frac{1}{4}$ é a probabilidade de:

- (A) sair "cara" nos quatro lançamentos
- **(B)** sair "cara", exactamente, em dois lançamentos
- (C) sair "cara" em apenas um lançamento
- (D) sair "cara" no terceiro lançamento.

Exercício 5

Numa turma de 28 alunos, 14 praticam natação, 10 voleibol e 8 não praticam qualquer uma destas modalidades.

- **5.1.** Construa uma tabela (diagrama de Carrol) e um digrama de Venn que traduzam a situação.
 - **5.2.** Escolhendo um aluno ao acaso, qual é a probabilidade desse aluno:
 - **5.2.1.** praticar apenas voleibol?
 - 5.2.2. não praticar natação?
 - 5.2.3. praticar as duas modalidades?

Exercício 6

Um saco tem 10 berlindes amarelos e também berlindes vermelhos. Tirando um berlinde ao acaso, a probabilidade de que seja amarelo é 0,25. Quantos berlindes amarelos têm que ser introduzidos no saco para que a probabilidade de tirar um berlinde amarelo suba para 0.5?

Exercício 7

Considere um quadrado inscrito num círculo de raio r.

Escolhendo um ponto do círculo ao acaso e admitindo que a probabilidade de um ponto pertencer a uma região do círculo é directamente proporcional à sua área, calcule a probabilidade do ponto escolhido pertencer ao quadrado.

Exercício 8

No triângulo [ABC] escolhe-se um ponto ao acaso.

Sabendo que M e N são os pontos médios de [AB] e [BC], respectivamente qual é a probabilidade do ponto escolhido pertencer ao triângulo [MBN]?

(admita condições idênticas às do exercício 7)

Exercício 9

Uma confeitaria fabrica duas variedades de biscoitos : caladinhos e areados.

A confeitaria tem verificado que 30% dos seus clientes compra caladinhos, 25% areados e 55% não compra nem uma coisa nem outra. Um cliente é escolhido ao acaso à saída da confeitaria. Determine a probabilidade de que ele tenha comprado

- 9.1. caladinhos e areados;
- 9.2. apenas caladinhos;
- 9.3. caladinhos ou areados.

Exercício 10

Uma caixa contém oito bombons, três dos quais são de laranja. Uma outra caixa contém cinco bombons, dois dos quais são de laranja. Tira-se um bombom da primeira caixa e, em seguida, um bombom da segunda caixa. A

A probabilidade de que apenas um seja de laranja é:

(A)
$$\frac{5}{13}$$

(B)
$$\frac{9}{40}$$

(c)
$$\frac{19}{40}$$

(D)
$$\frac{1}{4}$$

Exercício 11

Considere a equação do 2° grau, $x^2 + k x + 4 = 0$. Joga-se um dado cúbico e toma-se para valor de k o número de pintas da face do dado virada para cima.

Oual é a probabilidade da equação assim obtida ter duas soluções reais distintas?

Exercício 12

Um professor deixou cair os boletins de matrícula e as fotografias (que estavam presas por um clip) dos oito primeiros alunos do 11ºC e apanhou ao acaso um boletim e uma fotografia. A probabilidade de que ambos sejam do mesmo aluno é:

(A)
$$\frac{1}{64}$$
 (B) $\frac{1}{8}$ (C) $\frac{1}{16}$ (D) $\frac{1}{4}$

(c)
$$\frac{1}{16}$$

(D)
$$\frac{1}{4}$$

Exercício 13

Num saco estão cinco fichas numeradas de 1 a 5. Tiram-se, sucessivamente, as fichas, uma a uma, sem reposição, até o saco ficar vazio. A probabilidade das fichas saírem por ordem crescente de numeração é:

(A)
$$\frac{1}{15}$$

(B)
$$\frac{5}{120}$$
 (C) $\frac{5}{15}$ (D) $\frac{1}{120}$

(c)
$$\frac{5}{14}$$

D)
$$\frac{1}{120}$$