

Matemática Ficha de Trabalho

Questões de escolha múltipla - global

12°ano

- 1. No lancamento de um dado com as faces numeradas de 1 a 6, considera os acontecimentos:
- A: "sair face 6":
- B: "Sair face com número múltiplo de 3":
- C: "sair face com número par".
- (A) B e C são acontecimentos contrários.
- (B) A e C são acontecimentos incompatíveis.
- (C) B e C são acontecimentos compatíveis
- (**D**) A e B são acontecimentos incompatíveis.
- 2. Num armazém há três caixas iguais azuis e oito caixas iguais vermelhas.

Um funcionário esteve a numerá-las e, de seguida, vai empilhar as 11 caixas de modo que as três caixas azuis figuem juntas.

O número de maneiras de o fazer é:

- (A) ${}^{9}C_{1}$. (B) $3! \times 9!$. (C) ${}^{11}C_{2}$. (D) ${}^{11}A_{2}$.
- 3. a b c d e f g h representam uma linha completa do Triângulo de Pascal, em que as letras representam os números dessa linha.

Oual das seguintes igualdades é falsa?

- (A) a + h = 2. (B) c = 28. (C) d = e. (D) g = 7.

- 4. Escolhem-se, ao acaso, dois vértices diferentes de um paralelepípedo rectângulo. Qual é a probabilidade de que esses dois vértices sejam extremos de uma aresta?
 - (A) $\frac{12}{{}^{8}C}$. (B) $\frac{12}{8^{2}}$. (C) $\frac{8}{{}^{8}C}$. (D) $\frac{8}{{}^{8}A}$.

- 5. As cinco letras da palavra TIMOR foram pintadas, cada uma em sua bola.
 - As cinco bolas, indistinguíveis ao tacto, foram introduzidas num saco.
- Extraem-se, aleatoriamente, as bolas do saco, sem reposição, e colocam-se em fila, da esquerda para a direita.

Qual é a probabilidade de que, no final do processo, fique formada a palavra TIMOR, sabendo-se que, ao fim da terceira extracção, estava formada a sucessão de letras TIM?

- **(A)** 0.
- (C) $\frac{1}{2}$.
- **(D)** 1.

- 6. A probabilidade de a Susana chegar atrasada às aulas é 0,2. A probabilidade de a Susana chegar atrasada às aulas em apenas um dia nos cinco dias da próxima semana é:
- (A) $\left(\frac{1}{5}\right)^4 \times \frac{4}{5}$; (B) $\left(\frac{1}{5}\right)^3 \times \frac{4}{5}$; (C) $\frac{1}{5} \times \left(\frac{4}{5}\right)^4$; (D) $\left(\frac{4}{5}\right)^4$.
- 7. Seja X uma variável aleatória que toma os valores 1, 2, 3 e 4.

Sabe-se que:

$$p(X \mid 3) = \frac{1}{2}$$
; $p(X \mid 3) = \frac{1}{3}$ e $p(X = 1) = p(X = 2)$

Os valores da média e do desvio padrão desta distribuição, são:

- (A) $u = 3 e \sigma = 1.15$:
- **(B)** $u = 3 e \sigma = 1.33$:
- (C) $\mu = 2.5 \ e \ \sigma = 1.88$: (D) $\mu = 2.5 \ e \ \sigma = 3.54$
- **8.** De uma amostra de 500 laranjas, o peso unitário, em gramas, segue uma distribuição normal N(70; 5).

Retira-se, ao acaso, uma dessas laranjas.

Considera os seguintes acontecimentos:

A: "O peso da laranja retirada é superior a 75 g".

B: "O peso da laranja retirada é inferior a 60 g".

Oual das afirmações é verdadeira?

- **(A)** p(A) = p(B)
- **(B)** $p(A) \rangle p(B)$
- (C) $p(A) \langle p(B) \rangle$
- **(D)** p(A) + p(B) = 1.
- **9.** Sendo A e B acontecimentos do espaco E, se $p(\overline{A}) = 0.3$ e p(B) = 0.4, então o menor valor que $p(A \cap B)$ pode tomar é:
 - **(A)** 0:
- **(B)** 0.1:
- **(C)** 0.2:
- **(D)** 0.3.
- 10. Sejam X e Y dois acontecimentos de um mesmo espaço.

Se $p(X \cup Y) = 0.7$ e $p(X \cup \overline{Y}) = 0.7$, então o valor de p(X) é:

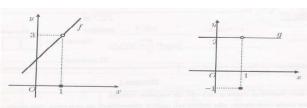
- (A) 0,2;
- **(B)** 0,3;
- **(C)** 0,4;
- **(D)** 0,5.
- 11. Se R e S são dois acontecimentos possíveis e equiprováveis de uma mesma experiência aleatória e

 $p(R \cup S) = 2p(S)$, qual das afirmações é necessariamente verdadeira?

- (A) p(R) = p(S) = 0.5
- **(B)** R e S são independentes
- (C) R e S são incompatíveis
- **(D)** R = S

12. Seja A um acontecimento possível e não certo.

O valor de $p(A/\overline{A})$ é:


- **(A)** 0:
- **(B)** 1:
- (C) p(A);
- **(D)** 1 p(A).
- 13. A tabela de distribuição de probabilidade de uma variável X é:

x_i	0	1	2
$p(X=x_i)$	0,2	а	0,5

Qual é o valor médio desta distribuição?

- (A) $\frac{a+1}{3}$; (B) 1,3; (C) $\frac{a+0,5}{3}$;
- **(D)** 0,4.
- 14. A idade X dos professores de uma Escola Secundária é uma variável com distribuição aproximadamente normal. A probabilidade da idade de um professor estar entre 35 e 50 anos é maior se a idade média dos professores for:
 - (A) 36 anos
- **(B)** 46 *anos*
- (C) 41 anos
- (**D**) 51 anos
- 15. Considera dez dados cúbicos, cada um numerado de 1 a 6, mas em que as faces com números ímpares são verdes e as faces com números pares são amarelas.
- O Pedro lançou os dez dados e reparou, que as faces voltadas para cima eram todas amarelas. Qual é a probabilidade de terem saído só números inferiores a cinco?

- (A) $\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\left(\frac{1}{3}\right)^{10}$ (D) $\left(\frac{2}{3}\right)^{10}$
- 16. Nas figuras a seguir estão representadas partes dos gráficos das funções $f \in g$, e descontínuas no ponto de abcissa 1.

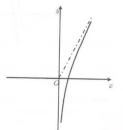
É contínua para x = 1, a função:

- (C) $f \times g$

- 17. Na figura ao lado está parte do gráfico da função g, de domínio $R\setminus_{\{0\}}$. Sabe-se que:
- g é uma função par;
- A recta de equação y = 2x é uma ssimptota do gráfico de g.

Sejam

$$a = \lim_{x \to +\infty} [g(x) - 2x] \quad e \quad b = \lim_{x \to -\infty} \frac{g(x)}{x}.$$



(B)
$$a = 2$$
 e $b = 2$

(C)
$$a = 0$$
 e $b = 2$

(D)
$$a = 0$$
 e $b = -2$

18. Considera uma certa função f de domínio \Box . Sabe-se que: y = x + 3 é a equação de uma recta tangente ao gráfico de f no ponto de abcissa 2.

Qual das afirmações seguintes é necessariamente verdadeira?

(A)
$$f(2) = 3$$

(B)
$$f'(2) = 3$$

(C)
$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f(2)$$
 (D) $\lim_{x \to 2} f(x) = f(2)$

(D)
$$\lim_{x \to 2} f(x) = f(2)$$

Bom trabalho Josefa Bastos