

Matemática 12º ano

Exercícios de preparação para exame

Probabilidades

Distribuição de frequências relativas e distribuição de probabilidades. Distribuições Binomial e Normal.

Exercício 1

Uma certa variável aleatória X tem a seguinte distribuição de probabilidade.

X_i	1	2
$P(X=x_i)$	a	b

Qual é a média desta variável aleatória?

(A)
$$a+b$$

(B)
$$\frac{a+}{2}$$

(C)
$$a+2b$$

(D)
$$2a+b$$

Exercício 2

Uma caixa tem cinco bombons, dos quais apenas dois têm licor.

Tira-se da caixa, ao acaso, uma amostra de três bombons.

Considere que X designa a variável "número de bombons com licor existentes nessa amostra". Qual das seguintes distribuições de probabilidades pode ser a da variável X?

(A)

X,	0	1	2
$P(X=x_i)$	$\frac{1}{{}^{5}C_{3}}$	6 5C ₃	3 5C ₃

(C) P(X=x)5 C3

(В)

(D)

3

X _i	0	nigas 11e gar	2
$P(X=x_i)$	3	6	1
	°C ₃	°C ₃	°C₃

Xi	
P(X=x)	

X _i	1.00	2	3
$P(X=x_i)$	3	6	_1_
$I(\lambda - \lambda_i)$	5C3	5 C ₃	5 C ₃

Exercício 3

Lança-se duas vezes um dado equilibrado, com as faces numeradas de 1 a 6. Seja X o número de vezes que sai 6 nos dois lançamentos. Qual é a distribuição de probabilidades da variável X?

(A)

Xi	0	1	2
$P(X=x_i)$	$\left(\frac{5}{6}\right)^2$	$2 \times \frac{1}{6} \times \frac{5}{6}$	$\left(\frac{1}{6}\right)^2$

(C) $P(X=x_i)$

Xi	0	1	2
$P(X=x_i)$	$\left(\frac{1}{6}\right)^2$	$2 \times \frac{1}{6} \times \frac{5}{6}$	$\left(\frac{5}{6}\right)^2$

X _i	0	1	2
$P(X=x_i)$	1_	$\frac{1}{-} \times \frac{5}{-}$	5

Exercício 4

A tabela de distribuição de probabilidades de uma variável aleatória X é:

Xi	1	2	3
P(X=x)	а	2a	a

(B)

(D)

Oual é ao valor de a

- (B) $\frac{1}{4}$ (C) $\frac{1}{3}$

Exercício 5

A Patrícia tem uma caixa com cinco bombons de igual aspecto exterior, mas só um é que tem licor. A Patrícia tira, ao acaso, um bombom da caixa, e come-o e, se não for de licor, experimenta outro. Vai procedendo desta forma até encontrar e comer o bombom de licor.

Seja X a variável aleatória "número de bombons **sem licor** que a Patrícia come".

Qual é a distribuição de probabilidades da variável X?

(A) 2 3 P(X=x)0,2 0,2 0,2 0,2 0,2

(B) 0 X_i 3 4 P(X=x)0,1 0,1 0,2 0,2 0,4

(C) 2 3 5 4 0,2 P(X=x)0,2 0,2 0,2 0,2

(D) 4 5 P(X=x)0.1 0,1 0,2 0,2 0,4

Exercício 6

Numa caixa estão três cartões, numerados de 1 a 3?

Extraem-se ao acaso, e em simultâneo, dois cartões da caixa.

Seja X o maior dos números saídos.

Qual é a distribuição de probabilidades da variável aleatória X?

(A)

X _i	2	3
$P(X=x_i)$	1	2
, (,, _,,,)	3	3

(B)

X _i	2	3
$P(X=x_i)$	$\frac{1}{2}$	$\frac{1}{2}$

(C)

Xi	1	2	3
$P(X=x_i)$	1	1	1
	3	3	3

(D)

Xi	1	2	3
$P\left(X=x_{i}\right)$	1	1	1
	6	3	2

Exercício 7

Na figura estão representados os gráficos de duas distribuições normais. Uma das distribuições tem valor médio e desvio-padrão b. A outra tem valor médio c e desvio-padrão d.

Os gráficos são simétricos em relação à recta r.

Qual das afirmações é verdeira?

(B) a=c e b<d

(D) a < c e b = d

Exercício 8

Seja S o espaço de resultados associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos possíveis, mas não certos.

Prove que $A \in B$ são independentes se, e só se, $P(B \mid A) = P(B \mid \overline{A})$

Exercício 9

Uma caixa contém bolas brancas e bolas pretas, num total de 12 bolas. Considere a experiência aleatória que consiste na extracção sucessiva, com reposição, de duas bolas.

Seja X a variável que representa o número de bolas brancas extraídas. Na tabela seguinte encontra-se representada a distribuição de probabilidades da variável X.

X,	0	1	2
$P(X=x_i)$	9	3	1
	16	8	16

- a) Represente através de uma tabela, a distribuição de probabilidades da variável Y: "número de bolas pretas extraídas"
- b) Quantas bolas brancas e quantas bolas pretas tem a caixa? Justifique a sua resposta.

Exercício 12

Numa turma do 12ºano, a distribuição dos alunos por idades e sexo é a seguinte:

	Raparigas	Rapazes
16 anos	5	6
17 anos	7	8

Para formar uma comissão que vai preparar um baile de finalistas, vão ser sorteados três rapazes e duas raparigas desta turma.

- a) Qual é a probabilidade de a comissão ficar constituída apenas por jovens de 16 anos?
- b) Admita agora que já estão sorteados quatro dos cinco jovens que vão constituir a comissão: os três rapazes e uma rapariga, a qual tem 16 anos de idade.

Para a comissão ficar completa, falta, portanto, escolher aleatoriamente uma rapariga. Seja X a variável aleatória: número de raparigas de 17 anos que a comissão vai incluir. Construa a tabela de distribuição de probabilidades da variável X.

Soluções

- 1. (
- 2.
- 3.
- 4 (
- 5 (
- *c (*
- **-** ,
- 0 /
- 9. (
- 10. (
- 11.
- 12.
- 13.
- 14.
- 15.