

Matemática 12º ano

Exercícios de preparação para exame

Probabilidades

Problemas de Contagem; Calculo Combinatório; Triângulo de Pascal: Binómio de Newton

Exercício 1

Uma pessoa vai visitar cinco locais, situados no Parque das Nações, em Lisboa: O Pavilhão de Portugal, o Oceanário; O Pavilhão Atlântico, a Torre Vasco da Gama e o Pavilhão do Conhecimento.

De quantas maneiras diferentes pode planear a sequência das cinco visitas, se quiser comecar na Torre Vasco da Gama e acabar no Oceanário?

- (A) 6
- **(B)** 12
- (C) 24
- (D) 120

Exercício 2

Pretende-se dispor, numa prateleira de uma estante, seis livros, dois dos quais são de Astronomia.

De quantas maneiras diferentes o podemos fazer, de tal forma que os dois primeiros livros, do lado esquerdo, sejam os de Astronomia?

- (A) 24
- **(B)** 36
- (C) 48
- (D) 60

Exercício 3

Um casal e três filhos decidem ir ao teatro. Sabe-se que vão ocupar lugares consecutivos e que o pai e a mãe se sentam ao lado um do outro.

De quantas maneiras pode esta família ocupar os seus lugares?

- (A) 8
- **(B)** 24
- (C) 48
- (D) 120

Exercício 4

Queremos colocar seis bolas indistinguíveis em quatro caixas distintas, de forma a que cada caixa contenha pelo menos uma bola.

De quantas maneiras diferentes as bolas podem ficar colocadas nas caixas?

- (A) 4
- **(B)** 8
- (C) 10
- **(D)** 12

Exercício 5

Num torneio de xadrez, cada jogador jogou uma partida com cada um dos outros iogadores. Supondo que participaram no torneio 10 iogadores, o número de partidas disputadas foi:

- (A) ${}^{10}C_2$
- (B) ${}^{10}C_{0}$
- (C) 10!
- (D) 10×9

Exercício 6

A Joana comprou 10 discos, todos diferentes, sendo três deles de música clássica e os restantes de jazz. Pretende oferecer esses 10 discos aos seus dois irmãos, o Ricardo e o Paulo, de modo aue

- cada irmão fique com o mesmo número de discos;
- o Ricardo figue com, exactamente, dois discos de música clássica.

De quantas maneiras o poderá fazer?

(A) ${}^{3}C_{2} \times {}^{7}C_{3}$

(B) ${}^{3}C_{2} \times {}^{7}C_{3} \times {}^{3}C_{1} \times {}^{7}C_{4}$

(C) ${}^{3}C_{2} + {}^{7}C_{3}$

(D) ${}^{3}C_{2} \times {}^{7}C_{2} + {}^{3}C_{1} \times {}^{7}C_{4}$

Exercício 7

Foram oferecidos dez bilhetes para uma peca de teatro a uma turma com doze rapazes e oito raparigas.

Ficou decidido que o grupo, que vai ao teatro, é formado por cinco rapazes e cinco

De quantas maneiras diferentes se pode formar este grupo?

- (A) ${}^{12}C_5 \times {}^8C_5$
- **(B)** ${}^{12}A_5 \times {}^8A_5$
- (C) $12 \times 8 \times 5^2$

Exercício 8

Um novo país, o Colorilândia, quer escolher a sua bandeira: ela terá quatro tiras verticais.

Estão disponíveis cinco cores diferentes. Como é óbvio, duas tiras vizinhas não podem ser da mesma cor. Entre quantas bandeiras diferentes vai decidir a população da Colorilândia?

- (A) 5×4^3
- **(B)** $5\times4\times3\times2$ **(C)** 5+4+3+2 **(D)** $5^2\times3^2$

Exercício 9

Num certo país existem três empresas operadoras de telecomunicações: A, B e C.

Independentemente do operador, os números de telemóveis têm nove algarismos. Os números do operador A começam por 51, os do B por 52 e os do C por 53.

Quantos números de telemóvel constituídos só por algarismos ímpares podem ser atribuídos nesse país?

(A) 139630 (B) 143620 (C) 156250

(D) 165340

Exercício 10

 $^{1997}C_{100} + ^{1997}C_{101}$ é igual a:

(A) $^{1998}C_{101}$

(B) $^{1996}C_{100}$

(C) $^{1997}C_{201}$

Exercício 11

a b c d e f q representa uma linha completa do triângulo de Pascal, onde todos os elementos estão substituídos por letras.

Qual das seguintes igualdades é verdadeira?

(A) $c = {}^{6}C_{3}$

(B) $c = {}^{6}C_{2}$

(C) $c={}^{7}C_{3}$ (D) $c={}^{7}C_{2}$

Exercício 12

A soma dos três primeiros elementos de uma certa linha do triângulo de Pascal é 121. Qual é o terceiro elemento da linha seguinte?

(A) 78

(B) 91

(C) 120

(D) 136

Exercício 13

Considere duas linhas consecutivas do triângulo de Pascal das quais se reproduzem alguns elementos

126 120

Qual é o valor de b?

(A) 164

(B) 198

(C) 210

(D) 234

Exercício 14

Quantas são as soluções da equação $(x+1)^4 = x^4 + 4x^3 + x + 1$?

(A) 1

(B) 2

(C) 3

(D) 4

Exercício 15

Um dos termos do desenvolvimento de $(\pi + e)^n$ é $120\pi^7 e^3$.

O valor é n é:

(A) 10

(B) 12

(C) 20

(D) 21

Soluções 1. (A)

> 2. (C) 3. (C)

4. (C)

5. (A)

6. (A)

7. (A)

8. (A) 9. (C) 10.(A)

11.(B)

12.(C)

13.(C)

14.(B) 15.(A)